Which Quantile is the Most Informative ? Maximum Entropy Quantile Regression ∗
نویسندگان
چکیده
This paper studies the connections among quantile regression, the asymmetric Laplace distribution, and the maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we develop a maximum entropy quantile regression estimator. This approach delivers estimates for the slope parameters together with the associated “most informative” quantile. Similarly, this method can be seen as a penalized quantile regression estimator, where the penalty is given by deviations from the median regression. We derive the asymptotic properties of this estimator by showing consistency and asymptotic normality under certain regularity conditions. Finally, an application to the U.S. wage data to evaluate the effect of training on wages illustrates the usefulness and implementation of our methodology.
منابع مشابه
Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression
This paper studies the connections among quantile regression, the asymmetric Laplace distribution, maximum likelihood and maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we propose an estimator bas...
متن کاملObjective Bayesian analysis on the quantile regression
The dissertation consists of two distinct but related research projects. First of all, we study the Bayesian analysis on the two-piece location-scale models, which contain several well-known subdistributions, such as the asymmetric Laplace distribution, the -skew normal distribution, and the skewed Student-t distribution. The use of two-piece location-scale models is an attractive method to mod...
متن کاملBayesian quantile regression
1. Introduction: Recent work by Schennach(2005) has opened the way to a Bayesian treatment of quantile regression. Her method, called Bayesian exponentially tilted empirical likelihood (BETEL), provides a likelihood for data y subject only to a set of m moment conditions of the form Eg(y, θ) = 0 where θ is a k dimensional parameter of interest and k may be smaller, equal to or larger than m. Th...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملFirm Specific Risk and Return: Quantile Regression Application
The present study aims at investigating the relationship between firm specific risk and stock return using cross-sectional quantile regression. In order to study the power of firm specific risk in explaining cross-sectional return, a combination of Fama-Macbeth (1973) model and quantile regression is used. To this aim, a sample of 270 firms listed in Tehran Stock Exchange during 1999-2010 was i...
متن کامل